Zensei: Embedded, Multi-electrode Bioimpedance Sensing
for Implicit, Ubiquitous User Recognition
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Figure 1. Zensei embeds implicit and uninterrupted user identification in mobile devices, furniture or the environment. Our custom, wide-spectrum
multi-electrode sensing hardware allows high-speed wireless data collection of electrical characteristics of user’s bodies. A longitudinal 22-day experi-
ment with 46 subjects experiment shows promising classification accuracy and low false acceptance rate.

ABSTRACT

Interactions and connectivity is increasingly expanding to
shared objects and environments through, e.g., furniture, vehi-
cles, lighting, and entertainment systems. To allow transparent
personalization, we should avoid interruptions from explicit
authentication.

We introduce Zensei, an implicit sensing system that lever-
ages bio-sensing, signal processing and machine learning to
classify uninstrumented users by their body’s electrical prop-
erties. Zensei could allow many objects to recognize users.
E.g., phones that unlock when held, or cars that automatically
adjust mirrors and seats.

We introduce wide-spectrum bioimpedance hardware that
measures both amplitude and phase. It extends previous ap-
proaches through multi-electrode sensing and high-speed wire-
less data collection for embedded devices. We implement
the sensing in devices and furniture, where unique electrode
configurations generate characteristic profiles based on user’s
unique electrical properties. Finally, we discuss results from a
comprehensive longitudinal 22-day data collection experiment
with 46 subjects. Our analysis shows promising classification
accuracy and low false acceptance rate.
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INTRODUCTION

People interact with more and more smart devices, such as
mobile phones, tablets, laptops, and public displays. Our
interactions are also expanding to furniture, lighting, home
automation, vehicles, and transportation, and other everyday
objects and scenarios.

As objects around us are becoming Internet-connected, shared,
and smart, it will be increasingly important to personalize
the experience during interactions. Especially, when user
interactions are frequent, recognition procedures should be
as transparent as possible, to minimize interruptions, such as
prompts for passwords, personal identification number (PIN),
or biometric verification (e.g., fingerprints or iris).

Such procedures might also create unnecessary complexity
for tasks with limited privacy implications, such as automated
car seat preferences. More relaxed recognition may be useful
in such scenarios, due to the potential for transparent and
uninterrupted interaction. We are also seeing increasing use
of multi-factor authentication, where users are allowed access
through, e.g., the use of a secret (e.g., password, PIN) and a
physical item in their possession (e.g., mobile phone, bank
card, security key) or by proximity. Such mechanisms improve
robustness, but can also introduce even more friction.

User identification today is tedious, but necessary, especially
in scenarios in which users share a single device but have
their own preferred settings or interaction styles. This includes
shared TVs, video games, cars, phones, computers and tablets.

There are a variety of interesting opportunities available now
that everyday objects are being augmented with computational
power and network connectivity, and we envision that implicit
user identification and automated customization will be of
significant importance.



We thus see an opportunity for bio-based recognition tech-
niques to use implicit and transparent sensing to minimize the
need for explicit authentication by the user. We also envision
that bio-based recognition could complement existing tech-
niques by providing the benefits of multi-factor authentication
without explicit actions or burden on the user.

Zensei enables physical objects to identify users by sensing
body and touch behavior through electrical frequency response
sensing. It allows almost any object to be capable of user
recognition. For example, a phone that unlocks as it is picked
up, a car that adjusts the mirrors and seat based on the driver,
or a shared tablet that activates parental mode when a child
holds it (Figure 1).

Zensei is a new approach to implicitly recognize users by
their body’s electrical frequency response properties, with the
following contributions:

Contributions

1. Custom bioimpedance hardware that measures both ampli-
tude and phase and extends previous approaches through a
wide range of frequencies over multiple electrode combina-
tions, while enabling high-speed wireless data collection in
a compact and embedded form factor.

2. A set of form factors (hand pad, chair, and smartphone),
where unique electrode configurations generate characteris-
tic profiles based on user’s unique electrical properties.

3. A comprehensive longitudinal data collection experiment
with 46 subjects over 22 days. Our analysis shows promis-
ing classification accuracy and low false acceptance rate.

RELATED WORK AND APPROACHES

User identification and authentication technologies have a
long history with various proposed approaches. Here, we
specifically discuss biometric techniques, and how Zensei
builds on prior art.

Capacitive and Impedance Sensing of the Body for HCI

and Security Applications

Capacitive and impedance sensing of a user’s body has been
widely employed in HCI. Arrays of capacitive sensors cov-
ering surfaces have been used to enable touch and gesture
sensing. However, this work mostly focuses on flat or curved
planes due to relatively complex configurations and manufac-
turing processes [33, 26, 42, 43, 45, 39, 35, 29]. These capaci-
tive sensing techniques are generally measuring the amount of
electrode contact, such as surface area, insulation thickness,
and touch pressure through fingertip deformation. Zensei ex-
tends these architectures by measuring the impedance through
the body tissue through the capture of electrical response be-
tween a pair of electrodes. Zensei leverages this capability to
identify who is touching the object because of the differences
in body tissue composition (Figure 1).

DiamondTouch [11] uses capacitive sensing to measure the
coupling of a user’s body between a large sensing touchscreen
and a receiver, and disambiguates users based on the electrodes
that they are touching or sitting on. SkinTrack [49] can track
finger touch location continuously on skin with a finger-worn
transmitter and a wristband device.

Human tissue bioimpedance measurement techniques [28]
have been shown to be both versatile and widely applicable
for advanced sensing. Applications include medical diagnosis
(e.g., blood coagulation monitoring [27] and breast cancer
detection [23]), human body fluid composition measurement
[14], and commercial health products, like body fat scales.
More complex and controlled scanning configurations have
enabled techniques such as electrical impedance tomography
(EIT), to enable imaging inside the body with an array of sens-
ing electrodes in a cross-section. These approaches inspired
Zensei, where our focus is to use a small number of sensors to
explore tomographic scanning for user-specific body charac-
teristics.

Intra-body communication was proposed by Zimmerman et
al. as a Personal Area Network (PAN) [52, 51]. PAN, or Body
Area Network (BAN), is a method for communication between
devices on or near user’s bodies. PAN uses capacitive coupling
of pico-amp currents that are transmitted through the body
with data rates of 300 [52], 2400 [51] or 9600 bps [31]. Body-
Coupled Communications (BCC) [3] enabled even higher data
transfer speeds (10 Mb/s). These techniques mainly focus on
using the body as a data communication medium and to ensure
that two devices are on the same body, although Post et al. also
proposed transmitting power over a PAN [31]. EnhancedTouch
[41] senses human-to-human touch with wrist-worn devices.
Zensei focuses on using the human body to characterize the
user, rather than as a digital data communication path.

Tomo [48] applied Electrical Impedance Tomography (EIT) to
a wristband-shaped gesture recognition system. It measures
interior impedance geometry with eight electrodes in a wrist-
band. The system recognizes gross hand and thumb-to-finger
pinch gestures. Biometric Touch Sensing combines a wrist-
band bioimpedance sensor and a touch-screen computer for an
integrated authentication technique [22]. Zensei explores how
similar hardware can be embedded in devices and furniture to
allow uninstrumented users.

Swept Frequency Capacitive Sensing (SFCS) was shown to
capture the body’s capacitance using a single sensing elec-
trode to detect gestures on various everyday objects [36], and
to differentiate between touch-screen users (with no simulta-
neous multi-user touches) [18]. In the SFCS configurations,
whole-body capacitance is measured with a common ground
connection [36, 18].

Conventional and Bioimpedance-based Techniques for

Biometrics

Passwords are the most common authentication method, but
have major disadvantages. They need to be remembered, can
be observed, and tend to be reused [12, 19]. They are espe-
cially problematic due to the risk of theft and access if stored
insecurely [13].

Biometric approaches use physiological and behavioral char-
acteristics for recognition. Commonly proposed biometric
authentication techniques include sensing of the iris, face, gait,
superficial vein structure, fingerprint, ear shape, hand geom-
etry, retinal pattern, palm print, bone conduction through the
skull, voice, written signature, and DNA [24, 16, 4, 44, 21,



17, 37]. Yampolskiy and Govindaraju describe behavioral
biometrics in a comprehensive survey [47], whereas Cornelius
and Gutierrez focus on mobile contexts in their survey [8].

One of the most popular biometric techniques is fingerprint
recognition, which is widely used by border control agents,
laptop computers, and more recently in smartphones such as
the Apple iPhone’s TouchID [1] and the Sony Xperia Z5 [40].
TouchID and Sony Xperia Z5 combine a mechanical home
button and a fingerprint scanner to provide an integrated user
experience with a one-step interaction, while reducing the
burden of aligning a particular fingertip. Similarly, FiberIO
[20] captures fingerprints on back-projected touch screens.
It authenticates users during interaction using a fiber optics
plate and a high-resolution camera. Behavioral approaches
analyze, e.g., fingertip locations on multi-touch displays [5],
how displays are touched [50], how users type on touch-screen
keyboards [30], and GUI elements targeting behavior on a
touch-screen [6].

Some recent consumer products, including Jawbone’s UP3
[25] activity tracker and Samsung’s Simband [34], measure
bodily functions, such as blood flow, heart rate, respiration
rate, hydration levels and galvanic skin response (GSR), but
currently does not use this data for user recognition.

Rasmussen et. al. [32] propose to complement PINs through
the use of the frequency domain of the temporal response
from a square-pulse between two brass electrodes that the
user holds. They discuss an experiment that was conducted
with laboratory bench-top instruments (a wave generator and
oscilloscope) with ten subjects.

Cornelius and colleagues measure bioimpedance around users’
wrists for security applications [9, 10], and report detailed
evaluations of electrodes arrangements, permanence, and lon-
gitudinal effects with special wristband-shaped sensors [7].
They also demonstrate passive user recognition [9] using a
custom Shimmer [38] bracelet with an array of electrodes.
Eight participants wore the device for a day, and additional
data was collected from three of those participants after 140
days, with consistent results.

Zensei builds on this work by exploring a broader range of
devices and form factors, and daily data collection over several
weeks from a larger subject pool. We also introduce custom
sensor hardware to enable high-speed wireless data collection
for embedded devices.

ZENSEI: DESIGN OF OBJECT AUGMENTATION WITH

WIDESPECTRUM BIOIMPEDANCE SENSING

We advocate an approach to capture a user’s body’s electri-
cal characteristics by implementing sensors into the physical
objects around us. Our approach shares some similarity with
SFCS [36, 18], however, we measure both the amplitude and
phase components of the electrical frequency response and
do so among all combinations of up to eight embedded elec-
trodes. While SFCS uses a single electrode and measures
the impedance between the electrode and the ground (earth),
Zensei measures the impedance between multiple pairs of
electrodes with shielded cables (Figure 2 and 3).
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Figure 2. Zensei system block diagram. It consists of a PC and a sensor
board with a microcontroller and analog sensing circuits. The electrical
properties between two sensor electrodes are captured using a gain and
phase detector IC.

In our approach, we designed and developed prototypes to
demonstrate three different form factors that evaluate and ex-
hibit Zensei’s versatility. These include static sensing with
relatively stable and controlled user touch behavior (Hand
Pad), semi-static sensing with variable user touch behavior but
stable skin contact (Smartphone), and variable sensing with
variable touch behavior due to user posture and changes in
clothing (Chair). The chosen form factors are also representa-
tive of a range of use cases where this technology can have an
impact, from mobile devices to furniture.

Hand Pad. Six electrodes are arranged on a 3D-printed mold,
shaped after a generic right hand. The disc-shaped electrodes
(8 mm diameter) are placed at the five fingertips and the palm
near the base of the thumb (abductor pollicis brevis), as shown
in Figure 4, left. We are using silver/silvercloride (Ag/AgCl)
electrodes, originally designed for electroencephalography
(EEG) and electrocardiography (ECG), which are safe for use
in direct contact with human skin.

Chair. Six electrodes are arranged on a chair surface where
the hip, thigh, back, and arm can comfortably make contact
with the molded single-piece plastic shell. Electrodes are made
of thin copper tape, and are covered with thin plastic adhesive
tape to properly condition the experiment to prevent direct skin
contact. The dimensions of each electrode are approximately
50 mm x 200 mm (Figure 4, center).

Smartphone. Six electrodes are arranged on the two sides of
areplica LG Nexus 5 smartphone (three on the left edge and
three on the right). The electrodes are made of thin stainless
steel tape and are directly exposed to user touch. The dimen-
sions of the electrodes are 30 mm x 5 mm (Figure 1, top left,
and Figure 4, right).

Sensing System Overview

Zensei was implemented with custom-designed sensor boards;
(1) a prototype board stacked on top of a microprocessor eval-
uation board (Figure 3), and (2) a fully integrated, wireless,
and embeddable sensor board (Figure 5). The first board is
used for our evaluation and analysis.

The high-level system diagram for Zensei is shown in Figure
2. The sensing procedure is as follows. The signal generators
create sine waves at a range of programmable frequencies.
The signal is then amplified and outputs at a select electrode
pair. A part of the user’s body touches the electrodes, and the



Figure 3. Zensei prototype sensor boards used for data collection and
evaluation. Sensor boards consist of an ARM Cortex M4 evaluation
board and a custom analog sensing board.

Figure 4. The three prototype configurations: Hand Pad, Chair, and
Smartphone, and their electrode arrangements. Colors indicate the elec-
trode connection position on the custom sensor board.

return signal’s amplitude and phase component are captured
with the Analog-to-Digital converter (ADC) port of the mi-
croprocessor and RF gain and phase detector IC. Our current
sensor board hardware supports up to eight electrodes, how-
ever, we only used six electrodes with the evaluation in this
paper to match and compare against our first form-factor (i.e.,
five fingertips and palm). The captured amplitude and phase
data are transferred to a PC to be processed by a machine
learning classifier.

Implementation

General Hardware Design

Our implementation uses an NXP LPC4357 (ARM Cortex-M4
204MHz) microprocessor evaluation board (KEIL MCB4357)
along with a custom analog sensing extension board. We em-
ploy Analog Devices’ AD5932 wave generator IC to create
a sinusoidal wave, and the AD8302 RF Gain and Phase De-
tector for impedance measurement. In our evaluation with the
first-generation board, we used a passive envelope detector
circuit for amplitude measurement, and AD8302 for absolute
phase measurement. The sensing signal is £3.3V.

The electrode connections are controlled by analog demulti-
plexer (DMUX) circuits on the sensor board, and the sensing
electrode and ground electrode are switched among the multi-
ple electrodes after each set of frequency sweeps is completed.
If six electrodes are used, for example, there are 30 electrode
pairs in total, as shown in Figure 6. The ground is rotated
in sequence among the six electrodes by measuring in pairs
with the remaining five. In Figure 6, we indicate a particular
electrode input index with the same color graph. For example,
the red electrode is the sixth electrode input on the board and
goes to the palm, left arm, and right bottom electrode on the
hand pad, chair, and smartphone rigs, respectively.

Figure 5. Miniaturized wireless Zensei sensor board. The miniaturized
sensor board is powered by a lithium polymer battery. It has a micropro-
cessor, power management circuit, analog sensing circuit, and Bluetooth
wireless communication module.
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Figure 6. Electrode demultiplexing and ground electrode rotation.
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Figure 7. Amplitude and phase curves. Colors correspond to the elec-
trodes shown in Figure 4 for a given single ground electrode. The differ-
ences of each curve represent the slightly different electrical frequency
properties between pairs of electrodes.

We chose electrode materials that are suitable for each appli-
cation and form-factor. We chose medically-safe materials
(silver/silver-chloride and stainless steel) for electrodes that
touch the skin directly (Hand Pad and Smartphone). For furni-
ture, we decided to use thin, adhesive copper tape and insulate
with plastic tape, which is easier to cut and apply to non-planar
surfaces (Chair). The AC coupling that we use in this system
is extremely low. Direct coupling to an AC signal as such
is considered absolutely safe from a clinical perspective and
a similar technique is commonly used in consumer body-fat
scales and medical bioimpedance tomography units.

The amplitude and phase component of frequency response
reading outputs are digitized by 10-bit analog-to-digital con-
verter ports on the microcontroller. The actual captured
impedance and phase curves for a given rotation position are
shown in Figure 7 where the color of the curves indicates
which excitation electrode was used. The reading is the raw
voltage at the ADC. The amplitude response of the user’s
body is measured via a voltage divider with a fixed load on
the circuit. The phase difference caused by the user’s body
is measured as the VPHS output of AD8302 IC. Our current
implementation uses RG-316 coaxial cables and SMA con-
nectors (50Q2) to connect the sensing circuit and electrodes to
ensure the reliable signal shielding. In our future implementa-
tions, we plan to use thinner wires and smaller connectors to
enable more compact form factors.



Real-Time Visualization and Data-Collection Software

Data from the hardware implementation is processed, and in-
terpreted by custom visualization software (both in Java and
C++). This software allows the frequency sweep parameters
and paired-electrode configuration to be changed. Our imple-
mentation also includes real-time machine learning, classifica-
tion, and data-storage capabilities. The real-time classification
speed is most limited by the number and value of frequencies
being swept and the classification time by the model. In our
case the sweep time for all combinations of electrodes, includ-
ing three periods of each frequency for the signal to stabilize,
was approximately 140ms. There is some additional overhead
for data processing, hand-off, and classification which costs
our unoptimized system a total of around 300ms. To speed up
responsiveness in future implementations, we plan on using
a smaller number of frequencies and processing most of the
data on the device to prevent delays from data transmission.
Changes Made for Miniaturized Wireless Boards

We also developed a wireless board (50.8 mm x 83.6 mm,
20 g, shown in Figure 5). This board has two wave generator
ICs to create two separate wave outputs with a programmable
phase difference, which enables determining the sign of the
phase shift with an AD8302 RF gain and phase detector.

EVALUATION

Data Collection Procedure

We collected data from an initial group of 74 subjects to
evaluate the identification performance of Zensei in three
form-factors (Hand Pad, Chair, and Smartphone) over 30
days (22 days of data collection because of weekends)'. The
experiment was designed to introduce a realistic amount of
inter-subject physiological diversity, time-based physiological
changes, and subject behavior variability. We report on the
classification accuracy, False Acceptance Rate (FAR), and
False Rejection Rate (FRR) of the configurations.

Participants were all working professionals outside of
academia and recruited voluntarily from an external subject
pool through a user testing agency. Each subject was as-
signed an anonymous username and asked to provide basic bio-
graphical information. Subjects ranged in height (1.63—-1.96m,
mean = 1.76 £0.10m, weight (56.7-133.8kg, mean = 82.2 +
18.8kg), BMI (18.0-46.7, mean = 26.4 £ 5.4), skin type (dry—
oily), age (20-56 years old, mean = 33.23 4 8.87years), eth-
nicity, and sex (26% female, 74% male).

To introduce time-based physiological changes, subjects were
asked to provide five data samples per session in two sessions
per day, once in the morning and once in the afternoon, during
their workdays. This timing allowed for realistic changes in
clothing, skin condition, and body composition. An individ-
ual subject could have provided a maximum of 660 samples
for the duration of the experiment. (3 prototype setups x
5 samples x 2 sessions x 22 workdays = 660 samples.)

Twelve subjects provided data in at least one session per day
for all 22 days. This dataset, Dataset A, was used for the hold-
one-day-out and buffered training evaluations, as well as the
electrode configuration and subject confusion analyses. Forty-
six subjects participated in two sessions per day for at least 13

I'This study was approved by the IRB of the authors’ institution.
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Figure 8. Experimental setup. Anti-static wrist straps (pink) are used to
discharge static before starting data collection. Web cameras, used for
data verification, are shown in red.

days (not necessarily consecutive). This dataset, Dataset B,
was used for the subject pool size evaluation.

Subjects were instructed to follow a short procedure for each
session:

1. Place right hand on the Hand Pad five times in series, pick-
ing the hand up between each sample collection.

2. Pick up the mock-up smartphone (as you would normally

pick it up to read the screen) five times in series, placing the
phone back onto the table between each sample collection.

3. Sit down in the chair five times in series, getting up and off

the chair between each sample collection.

This procedure was designed to add realistic subject behavior
and interaction variability into the collected data.

The hardware was applied an excitation signal at a frequency
sweep from 1 KHz to 1.5 MHz in 150 linear steps. Data was
collected on three personal computers and stored for subse-
quent data processing. The first four days of results of the hand
pad were not used in the analysis because its circuit board had
malfunctioned and had to be switched out.

A given data sample is composed of 60 vectors of 150 points of
data (30 vectors for the amplitude response and 30 vectors for
the phase response of 150 different frequencies) compiled and
labeled by username and timestamp for easy segmentation.

We created one data collection kiosk for each configuration (a
computer, monitor, keyboard, sensor board, and one of either
the hand pad, chair, or smartphone), for a total of three kiosks
as shown in Figure 8. The kiosks were set up in an air condi-
tioned office building room near where most subjects worked
to encourage daily morning and afternoon participation.

A web camera was set up at each of the three arrangements to
take a photo when each sample was collected. This was done
to verify full electrode contact for the hand pad, holding as if
reading with the phone, and sitting back into the chair with
arms on the armrests. Samples that, upon photo inspection,
did not adhere to the above were removed from the datasets.
In total, 447 samples were removed from the dataset (1.3% of
the entire dataset).

To prepare the data for classification, the sixty vectors were
first smoothed using a moving average filter (n=5). It was
empirically determined that good performance was achieved
by feeding this smoothed data into an SVM classifier with
Polynomial Kernel (E = 1.0, C = 1.0). We used the SMO
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Figure 9. Hold-One-Day-Out Classification Accuracy (CA), False Accep-
tance Rate (FAR), and False Rejection Rate (FRR) for Dataset A. Error
bars represent standard deviation (SD).
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implementation in the WEKA Toolkit [46] to train our SVM
classifier. The classifier was designed to identify the correct
participant from separated participant training and test sets.
We also include the false acceptance rate and false rejection
rate to better understand error rates.

User Classification Analysis

Hold-One-Day-Out Evaluation

It is well known that an individual’s electrical properties can
change over time, for example, due to changes in levels of
environmental humidity or user tissue changes (e.g. sweat,
fat, and hydration levels) [14]. As a preliminary evaluation
of classification accuracy over the full time-period, we per-
formed a hold-one-day-out validation on Dataset A by training
our classifier on 21 days of data and testing on the remaining
day for every combination of days and averaging all resulting
combinations. As shown in Figure 9, the more constrained
arrangements (hand pad) tend to outperform those with more
user behavior variability. Additionally, the chair showed lower
performance likely because of the strong influence of the sub-
ject’s clothing in the collected signal. Overall, the high ac-
curacy and low FAR are promising considering the relatively
challenging long-term and variable scenarios in which the data
was collected. However, the higher FRR could restrict some
application scenarios.

Buffered Training Evaluation

Next, to evaluate the number of days of variability necessary
to maximize classification accuracy, we explored varying num-
bers of training days. To do this, we trained our classifier with
samples from days [0 — ¢] days where ¢ is shown on the x-axis
of Figure 10, 11, and 12. The training data was then tested
on each individual subsequent day (days [(# + 1) — 22]) and
averaged together. This would be most applicable to keeping
a running buffer of training data on a personal device. In this
case, our results suggest that the training buffer becomes rel-
atively stable after about nine days of collected training data.
The FAR and FRR for the Hand Pad configuration reduce over
accumulating days of training. This trend indicates that the
system can build a stronger classifier with varied training data
collected over a long period. The FAR and FRR for the Chair
do not drop as the Hand Pad does. This could be because the
subjects wear different clothing every day, with and without
sleeves, which results in more signal variability. The inconsis-
tencies seen for the Phone were likely observed because of the
large variability of grasping style within a single subject. We
explore specific reasons for such confusions in the discussion.
Subject Pool Size Evaluation

Finally, Dataset B was sectioned off into subsets of subjects
to create pools of 5, 15, 25, and 46 subjects. These pools were
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Figure 10. Average buffered training classification accuracy on subse-
quent days for 12 subjects (Dataset A). Standard deviation bars shown
for evaluating the performance of the multiple combinations of data for
a given average. Hand Pad data for 18 days of buffered training not
included because of malfunction on first four days of data. Error bars
represent SD.
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Figure 11. Buffered training FAR on subsequent days for 12 subjects
(Dataset A). Standard deviation bars shown for evaluating the perfor-
mance of the multiple combinations of data for a given average. Hand
Pad data for 18 days of buffered training not included because of mal-
function on first four days of data. Error bars represent SD.

created by taking the first N subjects from the pool (chronolog-
ically according to first participation date) from the original
46-subject dataset, where N appears on the x-axis of Figure 13,
14, and 15. Then, the first 13 days of complete participation
(i.e., >=2 sessions of captured data) for each subject were split
into every combination of 12 training days and one testing day
for evaluation. The resulting 13 combinations for each subject
pool size were then averaged, as shown in Figure 13.

Among the three form-factors, the Chair condition shows the
least favorable results, especially for five participants (Figure
13, 14, and 15). This is mainly because of the low amount
of variation of the captured signals due to the capacitively-
coupled garments. The classification performance is improved
by accumulating more days of training (Figure 10, 11, and
12). We expect that the performance will be more robust
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Figure 12. Buffered training FRR on subsequent days for 12 subjects
(Dataset A).Standard deviation bars shown for evaluating the perfor-
mance of the multiple combinations of data for a given average. Hand
Pad data for 18 days of buffered training not included because of mal-
function on first four days of data. Error bars represent SD.



Classification Accuracy by Subject Pool Size
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Figure 13. Classification accuracy on increasingly larger subject pool
sizes (Dataset B). Error bars represent SD.
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Figure 14. FAR on increasingly larger subject pool sizes (Dataset B). The
Chair condition results in relatively high false acceptance rates for five
subjects, but improves drastically for 15 and higher. Standard deviation
bars shown for evaluating the performance of the multiple combinations
of data for a given average. Error bars represent SD.

and consistent in more specific scenarios, such as commercial
drivers with uniforms. Zensei could also benefit such scenarios
by transparently complementing physical tokens, such as ID
badges or keys, which are vulnerable to theft and forgery.

Electrode Configuration and Subject Confusion Analysis

In order to better understand the reason behind the subject
classification accuracies observed, the data from each rig was
further evaluated to firstly peer deeper into certain electrode
combinations and secondly determine the most likely causes
for misclassifications between subjects. In the former case,
the data was divided to understand what number of electrodes
and specific electrode combinations achieved the highest clas-
sification accuracies on their own. In the latter case, we used
patterns in resulting confusion matrix data, recorded behav-
ioral interaction photo data, and pre-collected subject anatom-
ical data to determine the most probable cause for consistent
confusions between subjects.

Electrode Configuration Performance

As part of a preliminary evaluation of electrode influence on
classification accuracy, we first iteratively trained and tested
all possible combinations of all numbers of electrodes (i.e.
two, three, four, and five electrode groups) using the same
classification technique as noted above. The data for this eval-
uation was extracted from the final day of Daraset A subject
data to simplify computational load given the large number
of evaluations needed to evaluate all combinations on all 22
days. In this evaluation, the first 21 days were trained and then
tested against the final day for all electrode combinations in a
given electrode group.

False Rejection Rate by Subject Pool Size
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I
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Figure 15. False Rejection Rate on increasingly larger subject pool sizes
(Dataset B). Error bars represent SD.
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Figure 16. Performance for all combinations of a given number of elec-
trodes using Dataset A on the last day of testing only. Specifically, the
model was trained using data from all days except the final day, and
then evaluated on the final day. Error bars represent SD. No SD listed
for the six electrode group because, unlike the other groups, there is only
one possible combination of electrodes for this electrode group.

We observe that, in general, a higher number of electrodes
results in higher classification accuracy as shown in Figure
16. We can attribute this increased accuracy simply to a larger
amount of anatomical and behavioral data being sensed be-
cause of a great surface area being covered by the sensing
electrodes. However, this trend in accuracy begins to level off
around four electrodes, demonstrating that a lesser number of
electrodes may suffice for some implementations.

Next, the specific electrode combinations were evaluated
against each other and the highest classification accuracy com-
binations for each electrode group (i.e two, three, four, and five
electrode groups) were identified. As shown in Figure 17, the
highest accuracy electrode combination for the two-electrode
group also appeared in all other top performing combinations
for the remaining groups.

For the Hand Pad, electrodes one and four, the pointer and
pinky electrodes, were most significant in their impact towards
recognition, followed closely by the palm. For the pointer
electrode, we note in our captured image data that many users
begin to align their hand to the electrodes using the pointer
finger as a starting point. This ensures more reliable alignment
and skin contact at this electrode which may point to why it
is an important factor in classification. In contrast, the mid-
dle and ring finger are slightly more difficult to manipulate
and thus do not show reliable alignment. Additionally, we
observe that in our testing arrangement, the pinky electrode
may have been slightly too far for the subjects and thus served
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Figure 17. Highest performing electrode combination for each electrode
combination group (two, three, four, and five electrode groups) on all
three rigs by training on all but the final day of Dataset A, and classi-
fying on the remaining day. CA, FRR, and FAR denote Classification
Accuracy, False Acceptance Rate, and False Rejection Rate for each elec-
trode group.

as an important identifier of subject hand size. However, we
do not see correlations between average human finger length
variation and accuracy for any of the other electrodes which
were consistently touched. Finally, we note that the electrodes
in electrode group three are relatively evenly spread out at
maximum distance from each other on the hand, which may
be because there is more identifiable anatomical information
between points that are farther apart. All these factors indicate
that the classification accuracy in the Hand Pad is both a com-
bination of electrode alignment and the electrical properties of
the hand.

The phone rig’s strongest electrodes were the right-top and
right-center electrodes. One reason for this is the variety of dif-
ferent grasps that the subjects used when grabbing the phone.
Subjects with smaller hands or those who were naturally left-
handed could not reach the right-top electrode at all. We
observed that grasping style significantly impacted contact
with the right-center electrode as well, depending on thumb
wrapping behavior (for example, placing the thumb on the
screen or on the side of the device). However, despite these
behavioral differences, subjects with similar grasps could still
be differentiated.

Finally, the chair rig’s top performing electrodes were the
bottom-left and right-arm electrodes. The back electrodes
seem to switch in priority as well between the four-electrode
and five-electrode group, demonstrating to us that these elec-
trodes might not be as reliable because of different sitting
styles and additional layers worn by subjects due to winter
weather. The bottom and arm electrodes, in contrast, provided
more reliable contact in most cases and had thinner clothing
layers and less day-to-day variability. This is likely because
clothing on these areas is less variable and user weight and
arm resting style play in as a factor on these electrodes.

DISCUSSION

Our results illustrate the potential for implementing Zensei as
a technique for implicit user sensing in ubiquitous computing
scenarios, without the need for user instrumentation.

The data collection and analysis show that important factors
that influence Zensei’s performance include the amount of
training data under different conditions, contact and alignment
with electrodes, subject pool size, and electrode configuration.

Evaluations (Figure 10, 11, and 12) indicate that Zensei may
require a large amount of up-front training for it to properly
define the user’s behavior. One of the most important advan-
tages of Zensei is that we can continuously sense and collect
training data as the user interacts with Zensei-instrumented de-
vices and environments. Depending on the application, Zensei
could collect electrical property data in the background when
the device is used with traditional identification. Then, after
sufficient data is collected for reliable identification (as evalu-
ated in Figure 10), customization features could be suggested
to the user.

Another challenge is how to best ensure consistent measure-
ments. Our results show that performance is affected, as form
factors allow increasing variation in alignment, contact and
material between the body and the electrodes. For example,
if a particular user tends to change their smartphone grasping
style dramatically, it will be important to be able to correct
for rotated alignments or sufficiently learn variable grasping
behavior before automatically customizing their experience.
A thorough training process will help create a more robust
classifier.

The hand pad shows how consistent measurements through
mechanical alignment improves performance. This approach
is directly applicable to devices and tools with clearly defined
grips, such as power tools, garden tools, and kitchen appliances
(e.g., handheld mixers). For general-purpose electronics, how-
ever, restricting specific grasping limits the industrial design
options and the seamless integration of Zensei into everyday
devices. We are, however, interested in exploring other strate-
gies to ensure consistent measurements for such use cases.
This could include external sensors (e.g., pressure, proximity,
switches, and cameras) to automatically detect appropriate
alignment and contact, and then label samples accordingly.
Other strategies would include detecting user activities where
physical alignment is mechanically constrained or well under-
stood, such as using a keyboard on a smartphone.

From a physiological standpoint, identification with the body’s
electrical properties may not work as well for users who ex-
perience large fluctuations in biological properties throughout
the day (e.g., sweating profusely) or who live in highly vari-
able weather and humidity conditions. To address this, more
samples will need to be taken throughout the day in a variety of
conditions. Additionally, devices with variable electrode-skin
touching behavior (such as smartphones) need to cope with
both physiological changes and behavioral changes through-
out the day (for example, a smartphone grasping style while
walking may dramatically differ from a grasping style at night
time, while reading in bed).



Our quantitative analysis of classification accuracies, false
acceptance rates, and false rejection rates suggests that Zensei
currently is primarily suitable for smaller groups of users (e.g.,
less than ten), such as a household, work team, members in a
carpool, or in social groups like for multi-player gaming.

Furthermore, the current user differentiation accuracy is not
sufficient for critical security applications. For standalone
use, Zensei is, instead, more suited for lightweight and unob-
trusive customization of applications. We do, however, see
potential in combining Zensei with other authentication tech-
nologies to enable multi-factor authentication without added
effort for the user. The hand pad’s controlled placement, for
example, makes it particularly suitable in combination with
optical sensing (e.g., finger print, hand geometry, palm print
and vein structure), where Zensei’s bioimpedance sensing is
less vulnerable to theft and can add robustness.

In environments where only a limited number of users
are expected simultaneously, we envision that the Zensei-
instrumented device could be combined with wireless scanning
of mobile devices. This would allow it to assess which users
are present, and thus simplify disambiguation and increase
classification confidence.

APPLICATIONS: IMPLICIT USER RECOGNITION FOR DE-

VICES AND ENVIRONMENTS

Based on our results, we have identified a set of representa-
tive scenarios, that we believe illustrate the unique advantages
of Zensei to implicitly enable customization through instru-
mented devices and furniture.

Hand-based User Recognition for the Internet of Things:

Grasping and Touching

Zensei could be used as touch-based identification system to
customize experience with an informational device or home
appliance. When an individual wants to be identified by the
system, they just need to place their hand on the handle. Zensei
scans the electrical properties of the user’s hand and the kiosk
can then recognize and present useful information to the user
as shown in Figure 1. This identification technique can be
specifically useful for casual customization. For example, re-
frigerators at home may in the future have a Zensei-embedded
control panel, and show how often you are opening the re-
frigerator and give health advice. In other scenarios, remote
controls could be aware of who is holding them and display
suggested movie titles based on user preference and history.
The recognition accuracy could be improved by using other
sources to understand who is present, e.g., based on expected
users in a house or scanning of mobile devices.

As Zensei uses multiple embedded electrodes for sensing,
users could grab a Zensei-equipped doorknob in a certain way
when opening a door . Interaction with a doorknob is a unique
opportunity to capture and customize a user’s next intended
interaction in the room they are entering. By sensing in this
way, we could create powerful “user-specific commands” that
are made from a combination of physiological and behavioral
features. This could allow users to provide different instruc-
tions to their “connected home” from throughout the building,
without needing a special console. The home could then un-
derstand and interpret these commands from the context of

Figure 18. Zensei enables whole-body user recognition through instru-
mented furniture.

the user who is instructing them. For example, a grasp gesture
on the door while entering the home could initiate preferred
temperature and lighting settings. Similarly, a smart coffee
machine could customize a cup of coffee according to who
has entered the kitchen and instructed the start of breakfast
through the doorknob.

Whole-Body User Recognition: Ubiquitous Computing,

Vehicles and Furniture

Interactions between humans and the objects around them is
not limited to the hands. The trunk, limbs, feet, and other
body parts are also used for everyday interactions in our living
environment.

Because Zensei uses an AC Signal, it does not require direct
skin contact. This allows Zensei to be used in a variety of
scenarios in which clothing or object material may get in the
way of other methods. This could enable connected furniture
to customize a user experience by remembering preset user
preferences, as shown in Figure 1. A car seat could sense who
is sitting in it, and adjust the seat height, mirror angles, and
selected radio channel. Furthermore, it could prevent a child
from driving the car.

We also envision a co-working electrical desk that knows who
is working at it and automatically adjusts its height. It would
also be possible to augment shared home training equipment
that will adjust the weights when a particular family member
sits on a bench, as well as keep track of daily repetition counts
for them.

These scenarios are enabled without instrumentation of the
user, through the use of embedded sensing electronics. All
instrumentation is done on the object side and is invisible from
the outside. This gives furniture and interior designers creative
freedom while also keeping the burden on users to a minimum.

User Recognition for Portable Devices: Mobile Phones,

Remotes, and Electrical Tools

By augmenting portable devices, we can provide transparent
access to information through our user identification method
(see Figure 1). Because Zensei can be adapted to almost any
shape, it can be built into the housing of everyday handheld de-
vices such as smartphones, tables, TV remotes, and computer
external storage devices.



We demonstrated a smartphone with six embedded electrodes.
Zensei learns both the physiological properties of the user and
the ways in which the user typically holds the smartphone in
order to recognize them later. In situations where a phone or
tablet may be on a table in a shared environment with a small
and typically known group of people, such as an office or at
home, the implicit recognition using Zensei, could allow log-
ging in on the device. If the confidence is too low, the device
could resort to traditional unlocking using swipe patterns or
passwords. Other less security critical scenarios could use the
user recognition to simplify the interface, e.g., showing a more
basic menu or provide direct access to kids content without
the need of unlocking when a child holds the device.

Multi-player games with handheld devices is another inter-
esting area for social interaction in small groups. The tablet
would show the game screen for the player who is holding the
device. When the player passes the tablet to another player,
the game screen adapts.

Zensei could also be integrated into power tools, which typ-
ically have very defined ways of holding them, which helps
robustness and accuracy, thanks to consistent alignment and
contact. This could allow easy sharing of tools in a workshop,
where a user’s settings are always restored when they pick up
the device. It could prevent use by children or people with-
out the necessary training. Zensei would also enable logging
of professional tasks, e.g., lawn moving or woodworking, to
quantify time for simplified billing and auditing.

FUTURE WORK

Zensei has a more physically complex setup compared to pre-
vious single-electrode sensing technologies (e.g., [36]). In the
industry, single-piece injection-molded parts with integrated
electronic circuit traces are widely used for mobile phone
antennas and wireless charging coils. Furthermore, additive
manufacturing techniques are becoming popular. E.g., multi-
material 3D printing, such as Autodesk’s Project Wire [2]
that can 3D print plastic structures and conductive traces in
a single process. We are interesting in exploring these tech-
niques for Zensei as well [15], and should allow manufacturers
to produce Zensei-equipped objects) both in small and large
quantities.

In the implementation of Zensei used for our data analysis, the
sensor hardware could only measure the absolute value of the
phase difference due to the RF Amplitude/Phase detector IC’s
limitations. However, our latest sensor board, currently in test-
ing, is capable of measuring the sign of the phase difference.
This will enable Zensei to capture even more behavioral and
physiological property data. We are interested in using this
updated board for another longitudinal data collection study
and physically integrated with devices.

Zensei currently requires relatively demanding signal process-
ing because of the amount of data collected by multiplexing
between six electrodes in pairs. To address this, optimization-
based electrode pair selection methods can be used to choose
pairs that will yield the most useful information. As shown
in our work, placement and number of electrodes is highly
dependent on the device and expected usage.

We also hope to explore how Zensei can operate in combi-
nation with other sensing technologies without compromis-
ing its transparent sensing. We are both interested in aug-
menting existing authentication devices that rely on contact
(e.g., fingerprint sensors, keypads for pass codes), as well
as adding sensors that can help Zensei assess the quality of
measured samples. We believe that multimodal sensing and
disambiguation can greatly boost the different scenarios where
bioimpedance can be useful.

Lastly, there are situations in which users may want an ex-
plicit or obvious interaction for identification to maintain user
privacy or understand the reason for certain customization
behavior. For example, when tracking a guest user’s behaviors
on a new system that they may never return to again. Giving
new users an option to be anonymous or explicitly identified
is critical for user comfort.

CONCLUSIONS

We have introduced Zensei, a technique that allows objects
to automatically recognize their user through wide-spectrum
bioimpedance sensing. Zensei’s sensing of the human body
enables implicit personalization, individualization and adap-
tation without user instrumentation. We developed two ver-
sions of custom bioimpedance sensing hardware for our multi-
electrode sensing system and, in particular, show a small credit-
card-sized wireless sensor board. We implemented our tech-
nique in three form factors that were representative of our use
cases of interest: a hand pad, smartphone, and chair.

Our large-scale and longitudinal data collection with 46 sub-
jects using these form factors, and its associated evaluation
and analysis, demonstrates promising results of 84.1% +5.0%
subject classification accuracy, in addition to a low false ac-
ceptance rate (0.37% +0.10% ). We have also analyzed and
discussed how design parameters such as alignment, contact,
electrode configuration and anatomy influence the different
form factors. Our analysis of subject pool size and training
data provides further insight into the potential of our technique.

We have demonstrated the feasibility of implementing our
technique for smaller groups, such as families or work teams,
where it can help to augment interaction with shared devices
that would benefit from implicit personalization. We believe
that Zensei has great potential in complementing other user
sensing techniques, through its implicit sensing, the difficulty
to steal or forge the signature, and its applicability to many
different form factors, scales, and configurations.

We have also highlighted a set of applications related to the
Internet of Things and ubiquitous computing, where we en-
vision that Zensei could be integrated in, for example, door
handles, kitchen appliances, furniture, vehicles, smart phones,
and power tools, to make them smarter and user-aware. We
hope that Zensei will inspire future techniques to enable more
seamless and customized user interactions for a wide variety
of objects and connected devices.
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