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ABSTRACT 
Touché proposes a novel Swept Frequency Capacitive Sens-
ing technique that can not only detect a touch event, but also 
recognize complex configurations of the human hands and 
body. Such contextual information significantly enhances 
touch interaction in a broad range of applications, from 
conventional touchscreens to unique contexts and materials. 
For example, in our explorations we add touch and gesture 
sensitivity to the human body and liquids. We demonstrate 
the rich capabilities of Touché with five example setups 
from different application domains and conduct experi-
mental studies that show gesture classification accuracies of 
99% are achievable with our technology. 
Author Keywords: Touch; gestures; ubiquitous interfaces; 
sensors; on-body computing; mobile devices. 
ACM Classification Keywords 
H.5.2 [Information interfaces and presentation]: User Inter-
faces - Graphical user interfaces; Input devices & strategies. 
INTRODUCTION 
Touché is a novel capacitive touch sensing technology that 
provides rich touch and gesture sensitivity to a variety of 
analogue and digital objects. The technology is scalable, 
i.e., the same sensor is equally effective for a pencil, a door-
knob, a mobile phone or a table. Gesture recognition also 
scales with objects: a Touché enhanced doorknob can cap-
ture the configuration of fingers touching it, while a table 
can track the posture of the entire user (Figures 1b, 6 and 7). 
Sensing with Touché is not limited to inanimate objects – 
the user’s body can also be made touch and gesture sensi-
tive (Figures 1a and 9). In general, Touché makes it very 
easy to add touch and gesture interactivity to unusual, non-
solid objects and materials, such as a body of water. Using 
Touché we can recognize when users touch the water’s sur-
face or dip their fingers into it (Figures 1c and 10). 

Notably, instrumenting objects, humans and liquids with 
Touché is trivial: a single electrode embedded into an object 
and attached to our sensor controller is sufficient to compu-
tationally enhance an object with rich touch and gesture 
interactivity. Furthermore, in the case of conductive objects, 
e.g., doorknobs or a body of water, the object itself acts as 
an intrinsic electrode – no additional instrumentation is nec-
essary. Finally, Touché is inexpensive, safe, low power and 
compact; it can be easily embedded or temporarily attached 
anywhere touch and gesture sensitivity is desired. 
Touché proposes a novel form of capacitive touch sensing 
that we call Swept Frequency Capacitive Sensing (SFCS). 
In a typical capacitive touch sensor, a conductive object is 
excited by an electrical signal at a fixed frequency. The 
sensing circuit monitors the return signal and determines 
touch events by identifying changes in this signal caused by 
the electrical properties of the human hand touching the 
object [46]. In SFCS, on the other hand, we monitor the 
response to capacitive human touch over a range of fre-
quencies. Objects excited by an electrical signal respond 
differently at different frequencies, therefore, the changes in 
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Figure 1: Touché applications: (a) on-body gesture sensing;  

(b) a smart doorknob with a “gesture password”; (c) interact-
ing with water; (d) hand postures in touch screen interaction. 
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the return signal will also be frequency dependent. Thus, 
instead of measuring a single data point for each touch 
event, we measure a multitude of data points at different 
frequencies. We then use machine learning and classifica-
tion techniques to demonstrate that we can reliably extract 
rich interaction context, such as hand or body postures, from 
this data. Not only can we determine that a touch event oc-
curred, we can also determine how it occurred. Importantly, 
this contextual touch information is captured through a sin-
gle electrode, which could be simply the object itself. 
Although electromagnetic signal frequency sweeps have 
been used for decades in wireless communication and in-
dustrial proximity sensors [35], we are not aware of any 
previous attempt to explore this technique for touch interac-
tion. Our contributions, therefore, are multifold:  
1) We propose and develop a novel capacitive touch sensing 
technology, called Swept Frequency Capacitive Sensing. It 
allows for minimally instrumented objects to capture a 
wealth of information about the context of touch interaction. 
It also permits novel mediums for capacitive touch and ges-
ture sensing, such as water and the human body. 
2) We report a number of innovative applications that 
demonstrate the utility of our technology including a) smart 
touch interaction on everyday objects, b) tracking human 
body postures with a table, c) enhancing touchscreen inter-
action, d) making the human body touch sensitive, and e) 
recognizing hand gestures in liquids. 
3) We conduct controlled experimental evaluations for each 
of the above applications. Results demonstrate recognition 
rates approaching 100%. This suggests Touché is immedi-
ately feasible in a variety of real-world applications. 
RELATED WORK AND APPROACHES 
The importance of touch and gestures has been long appre-
ciated in the research and practice of human-computer in-
teraction (HCI). There is a tremendous body of previous 
work related to touch, including the development of touch 
sensors and tactile displays, hand gesture tracking and 
recognition, designing interaction techniques and applica-
tions for touch, building multitouch, tangible and flexible 
devices. See [2, 6, 21, 24, 25, 27, 44] for a subset of previ-
ous work on touch. 
The foundation for all touch interaction is touch sensing, 
i.e., technologies that capture human touch and gestures. 
This includes sensing touch using cameras or arrays of opti-
cal elements [15, 22], laser rangefinders [4], resistance and 
pressure sensors [31] and acoustics [16, 17] – to name a 
few. The most relevant technology is capacitive touch sens-
ing, a family of sensing techniques based on same physical 
phenomenon – capacitive coupling. 
The basic principles of operation in most common capaci-
tive sensing techniques are quite similar: A periodic electri-
cal signal is injected into an electrode forming an oscillating 
electrical field. As the user’s hand approaches the electrode, 
a weak capacitive link is formed between the electrode and 
conductive physiological fluids inside the human hand, al-

tering the signal supplied by the electrode. This happens 
because the user body introduces an additional path for flow 
of charges, acting as a charge “sink” [46]. By measuring the 
degree of this signal change, touch events can be detected.  
There is a wide variety of capacitive touch sensing tech-
niques. One important design variable is the choice of signal 
property that is used to detect touch events, e.g., changes in 
signal phase [19] or signal amplitude [1, 25, 30] can be 
used for touch detection. The signal excitation technique is 
another important design variable. For example, the earliest 
capacitive proximity sensors in the 1970s were oscillating at 
resonant frequency and measured signal dumping as addi-
tional capacitance that would affect the resonant frequency 
of the sensing circuit [35]. The choice of topology of elec-
trode layouts, the materials used for electrodes and sub-
strates and the specifics of signal measurement resulted in a 
multitude of capacitive techniques, including charge trans-
fer, surface and projective capacitive, among others [1, 25]. 
Capacitive sensing is a malleable and inexpensive technolo-
gy – all it requires is a simple conductive element that is 
easy to manufacture and integrate into devices or environ-
ments. Consequently, today we find capacitive touch in mil-
lions of consumer device controls and touch screens. It has, 
however, a number of limitations. One important limitation 
is that capacitive sensing is not particularly expressive – it 
can only detect when a finger is touching the device and 
sometimes infer finger proximity. To increase the expres-
siveness, matrices of electrodes are scanned to create a 2D 
capacitive image [6, 21, 30, 37]. Such space multiplexing 
allows the device to capture spatial gestures, hand profiles 
[30] or even rough 3D shapes [36]. However, this comes at 
the cost of increased engineering complexity, limiting its 
applications and precluding ad hoc instrumentation of our 
living and working spaces. Current capacitive sensors are 
also limited in materials they can be used with. Typically 
they cannot be used on the human body or liquids.  
In this paper, we advocate a different approach to enhancing 
the expressivity of capacitive sensing – by using frequency 
multiplexing. Instead of using a single, pre-determined fre-
quency, we sense touch by sweeping through a range of 
frequencies. We refer to the resulting curve as a capacitive 
profile and demonstrate its ability to expand the vocabulary 
of interactive touch without increasing the number of elec-
trodes or the complexity of the sensor itself. 
Importantly, our technology is not limited to a single elec-
trode. Sensor matrices can be easily constructed and would 
bring many of the unique sensing dimensions described in 
this paper. However, in the current work, we focus on a 
single electrode solution, as that is the simplest – and yet 
allows for surprisingly rich interactions. At the same time, it 
is compact, inexpensive and can be easily integrated into a  
variety of everyday objects and real world applications. 
SWEPT FREQUENCY CAPACITIVE SENSING 
The human body is conductive, e.g., the average internal 
resistance of a human trunk is ~100 Ω [42]. Skin, on the 



other hand, is highly resistive, ~1M Ω for dry undamaged 
skin [42]. This would block any weak constant electrical 
(DC) signal applied to the body. Alternating current (AC) 
signal, however, passes through the skin, which forms a 
capacitive interface between the electrode and ionic physio-
logic fluids inside the body [10]. The body forms a charge 
“sink” with the signal flowing though tissues and bones to 
ground, which is also connected to the body through a ca-
pacitive link [25, 46].  
The resistive and capacitive properties of the human body 
oppose the applied AC signal. This opposition, or electrical 
impedance1, changes the phase and amplitude of the AC 
signal. Thus, by measuring changes in the applied AC signal 
we can 1) detect the presence of a human body and also 2) 
learn about the internal composition of the body itself. This 
phenomenon, in its many variations, has been used since the 
1960s in medical practice to measure the fluid composition 
of the human body [10], in electro-impedance tomography 
imaging [5] and even to detect the ripeness of nectarine 
fruits [13]. More recently, it has been used in a broad varie-
ty of capacitive touch buttons, sliders and touchscreens in 
human-computer interaction [6, 19, 30, 46]. 
The amount of signal change depends on a variety of fac-
tors. It is affected by how a person touches the electrode, 
e.g., the surface area of skin touching the electrode. It is 
affected by the body’s connection to ground, e.g., wearing 
or not wearing shoes or having one or both feet on the 
ground. Finally, it strongly depends on signal frequency. 
This is because at different frequencies, the AC signal will 
flow through different paths inside of the body [10]. Indeed, 
just as DC signal flows through the path of least resistance, 
the AC signal will always flow through the path of least 
impedance. The human body is anatomically complex and 
different tissues, e.g., muscle, fat and bones, have different 
resistive and capacitive properties. As the frequency of the 
AC signal changes, some of the tissues become more op-
posed to the flow of charges, while others less, thus chang-
                                                             
1 Impedance is defined as a total opposition of circuit or material to AC 
signal at a certain frequency. Impedance consists of resistance and reac-
tance, which, in case of human body, is purely capacitive [10]. 

ing the path of the signal flow (see [10] for an overview of 
the bioelectrical aspects of human body impedance).  
Therefore, by sweeping through a range of frequencies in 
capacitive sensing applications, we obtain a wealth of in-
formation about 1) how the user is touching the object, 2) 
how the user is connected to the ground and 3) the current 
configuration of the human body and individual body prop-
erties. The challenge here is to reliably capture the data and 
then find across-user commonalities – static and temporal 
patterns that allow an interactive system to infer user inter-
action with the object, the environment, as well as the con-
text of interaction itself.  
SFCS presents an exciting opportunity to significantly ex-
pand the richness of capacitive sensing. We are not aware of 
previous attempts to design SFCS touch and gesture inter-
faces, investigate their interactive properties, identify possi-
ble application domains, or rigorously evaluate their feasi-
bility for supporting interactive applications2. All relevant 
capacitive touch sensing techniques use a single frequency. 
One of the reasons why SFCS techniques have not been 
investigated before could be due to computational expense: 
instead of sampling a single data point at a single frequency, 
SFCS requires a frequency sweep and analysis of hundreds 
of data points. Only recently, with the advance of fast and 
inexpensive microprocessors, has it become feasible to use 
SFCS in touch interfaces. Another challenge in using SFCS 
is that it requires high-frequency signals, e.g., ~3 Mhz. De-
signing conditioning circuitry for high-frequency signals is 
a complex problem. We will discuss these challenges and 
solutions in detail in the next section of this paper. 
TOUCHÉ IMPLEMENTATION 
The overall architecture of Touché is presented on Figure 
2a. The user interacts with an object that is attached to a 
Touché sensor board via a single wire. If the object itself is 
conductive, the wire can be attached directly to it. Other-
wise, a single electrode has to be embedded into the object 
and the wire attached to this electrode. 

                                                             
2 We reported preliminary explorations of SFCS technology in [29]. 
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Figure 2: (a) Touché architecture (b) Swept Frequency Capacitive Sensing with Touché. 



Touché implements SFCS on a compact custom-built board 
powered by an ARM Cortex-M3 microprocessor (Figure 3). 
The on-board signal generator excites an electrode with 
sinusoid sweeps and measures returned signal at each fre-
quency. The resulting sampled signal is a capacitive profile 
of the touch interaction. We stress that in the current version 
of Touché we do not measure phase changes of the signal in 
response to user interaction. We leave this for future work. 
Finally, the capacitive profile is sent to a conventional com-
puter over Bluetooth for classification. Recognized gestures 
can then be used to trigger different interactive functions. 
While it is possible to implement classification directly on 
the sensor board, a conventional computer provided more 
flexibility in fine-tuning and allowed for rapid prototyping. 
Sensor board design 
An ARM microprocessor, NXP LPC1759 running at 120 
MHz, controls an AD5932 programmable wave generator to 
synthesize variable frequency sinusoidal signal sweeps from 
1 KHz to 3.5 MHz in 17.5 KHz steps (i.e., 200 steps in each 
sweep, see Figure 2b). The signal is filtered to remove envi-
ronmental noise and undesirable high frequency compo-
nents and is also amplified to 6.6 Vpp (Figure 4a), which is 
then used to excite the attached conductive object. In the 
current design we tune Touché to sense very small varia-
tions of capacitance at lower excitation frequencies by add-
ing a large bias inductor Lb (~100 mH), a technique used in 
impedance measurement. By replacing it with a bias capaci-
tor, we can make Touché sensitive to very small inductive 
variations, e.g., copper coil stretching. 
The return signal from the object is measured by adding a 
small sensing resistor, which converts alternating current 
into an alternating voltage signal (Figure 4b). This signal is 
then fed into a buffer to isolate sensing and excitation sec-
tions; an envelope detector then converts the AC signal into 
a time-varying DC signal (Figure 4c). The microprocessor 
samples the signal at a maximum of 200 KHz using a 12-bit 
analog-digital converter (ADC). A single sweep takes 
~33 ms, translating to a 33 Hz update rate. 
Currently, the sampling rate of ADC is a main limiting fac-
tor for speed: a dedicated ADC with a higher sampling rate 
would significantly increase the speed of Touché. Sampling 
is much slower at low frequencies, as it takes longer for the 
analogue circuitry to respond to a slowly varying signal. In 
applications where an object does not respond to low fre-
quencies, we swept only in the high frequency range, tri-
pling the sensor update rate to ~100 Hz.  

Touché Sensing Configurations 
There are two basic sensor configurations. First, the user is 
simply touching on object or an electrode (Figures 5a and 
5c). This is the classic capacitive sensor configuration that 
assumes that both the sensor and the user are sharing com-
mon ground, even through different impedances. For exam-
ple, if the sensor were powered from an electrical outlet, it 
would be connected to the ground line of a building. The 
user would be naturally coupled to the same ground via a 
capacitive link to the floor or building structure. Although 
this link may be weak, it is sufficient for Touché.  
In the second case, the sensor is touching two different loca-
tions of the user body with its ground and signal electrodes 
(Figures 5b and 5d). In this configuration Touché measures 
the impedance between two body locations [10]. 
Communication and Recognition  
For classification, we use a Support Vector Machine (SVM) 
implementation provided by the Weka Toolkit [12] (SMO, 
C=2.0, polynomial kernel, e=1.0) that runs on the aforemen-
tioned conventional computer. Each transmission from the 
sensor contains a 200-point capacitive profile, from which 
we extract a series of features for classification.  
The raw impedance values from the frequency sweep have a 
natural high-order quality. As can be seen in Figure 6-10, 
the impendence profiles are highly continuous, distinctive 
and temporally stable. Therefore, we use all 200 values as 
features without any additional processing. Additionally, we 
compute the derivative of the impedance profile at three 
different levels of aliasing, by down-sampling profiles into 
arrays of 10, 20, 40 and using [-1, 1] kernel, yielding anoth-
er 70 features. This helps to capture shape features of the 

 
Figure 3: Touché sensing board: 36x36x5.5 mm, 13.8 grams. 
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Figure 5: Configurations of Touché applications. 

 
Figure 4: Variable frequencies sweep and return signal. 



profile, independent of amplitude, e.g., it is easy to see the 
peaks minima in Figures 6-10 – more difficult is to see the 
visually subtle, but highly discriminative peak slopes. 
Moreover, using the derivative increases robustness to glob-
al variations in impendence, e.g., an offset of signal ampli-
tude across all frequencies due to temperature variations. As 
a final feature, we include the capacitive profile minima, 
which was found to be highly characteristic in pilot studies 
(see Figures 6-10). Once the SVM has been trained, classi-
fication can proceed in a real-time fashion. 
EXAMPLE TOUCHÉ APPLICATIONS 
The application space of Touché is broad, therefore at least 
some categorization is pertinent to guide the development of 
the interfaces based on this technology. We identified five 
application areas where we felt that Touché could have the 
largest impact – either as a useful enhancement to an estab-
lished application or a novel application, uniquely enabled 
by our approach: 
• making everyday objects touch gesture sensitive 
• sensing human bimanual hand gestures 
• sensing human body configuration (e.g., pose) 
• enhancing traditional touch interfaces 
• sensing interaction with unusual materials (e.g., liquids) 
 

In the rest of this section we propose a single exemplary 
application for each category, highlighting the utility and 
scope of our sensing approach. We then evaluate these ap-
plications experimentally in the next section of the paper. 
Making objects touch and grasp sensitive 
If analogue or digital objects can be made aware of how 
they are being touched, held or manipulated, they could 
configure themselves in meaningful and productive ways 
[14, 28, 34, 37, 38]. The canonical example is a mobile 
phone which, when held like a phone, operates as a phone. 
However, when held like a camera, the mode could switch 
to picture-taking automatically. 
Touché offers a lightweight, non-invasive sensing approach 
that makes it very easy to add touch and gesture sensitivity 
to everyday objects. Doorknobs provide an illustrative ex-
ample: they lie in our usual paths and already require touch 

to operate. Yet, in general, doorknobs have not been infused 
with computational abilities. A smart doorknob that can 
sense how a user is touching it could have many useful fea-
tures. For example, closing a door with a tight grasp could 
lock it, while closing it with a pinch might set a user’s away 
message, e.g., “back in five minutes”. A sequence of grasps 
could constitute a “grasp password” that would allow an 
authorized user to unlock the door (Figure 1b).  
Objects such as doorknobs can be easily instrumented with 
Touché (Figures 5a). More importantly, existing conductive 
structures can be used as sensing electrodes, for example, 
the brass surface of a doorknob. Our Touché sensor could be 
connected to these elements with a single wire, requiring no 
further instrumentation (Figure 6). Contrast this to previous 
techniques that generally require a matrix of sensors [20, 30, 
37, 38]. We present detailed experimental evaluations of 
Touché in this context later in this paper. 
Body Configuration Sensing 
Touché can be used to sense the configuration of the entire 
human body. For example, a door could sense if a person is 
simply standing next to it, if they have raised their arm to 
knock on it, are pushing the door, or are leaning against it. 
Alternatively, a chair or a table could sense the posture of a 
seated person – reclined or leaning forward, arms on the 
armrests or not, one or two arms operating on the surface, as 
well as their configuration (Figure 7). More importantly, 
this can occur without instrumenting the user. Similar to 
everyday objects, conductive tables can be used as is, just 
by connecting a Touché sensor. Non-conductive tables 
would require a single flat electrode added to their surface 
or could simply be painted with conductive paint. 
Sensing the pose of the human body without instrumenting 
the user has numerous compelling applications. Posture-
sensing technologies are an active area of research, with 
applications in gaming, adaptive environments, smart offic-
es, in-vehicle interaction, rehabilitation and many others [9]. 
We view Touché as one such enabling technology, with 
many exciting applications. To this end, we report an evalu-
ation of body posture sensing with a Touché-enhanced table 
in the following Touché Evaluation section. 

Figure 6: Capacitive profiles for making objects touch and grasp sensitive (doorknob example). 
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Enhancing Touchscreen Interaction 
Touché brings new and rich interaction dimensions to con-
ventional touch surfaces by enhancing touch with sensed 
hand posture (Figure 1d) For example, Touché could sense 
the configuration of fingers holding a device, e.g., if they 
are closed into a fist or held open, whether a single finger is 
touching, all five fingers, or the entire palm (Figures 8). The 
part of the hand touching could be also possibly be inferred, 
e.g., fingertips or knuckles, a valuable extra dimension of 
natural touch input [16]. 
These rich input dimensions are generally invisible to tradi-
tional capacitive sensing. Diffuse infrared (IR) illumination 
can capture touch dimensions such as finger orientation [39] 
and hand shape [22]. However, sensing above the surface is 
challenging as image quality and sensing distance is severe-
ly degraded by traditional diffuse projection surfaces ([18] 
offers an expensive alternative). An external tracking infra-
structure can also be used. This, however, prohibits the use 
of mobile devices and introduces additional cost and com-
plexity [20, 40]. 
Touché provides a lightweight, yet powerful, solution to 
bring hand posture sensing into touchscreen interaction. 
There are many possible implementations – one is presented 
in Figures 5d and 8. At the very minimum, this would ena-
ble a touch gesture similar to a mouse “right click”. Right 
click is a standard and useful feature in desktop GUI inter-
faces. However, it has proved to be elusive in contemporary 
touch interfaces, where it is typically implemented as a tap-
and-hold [16]. Additionally, combining hand pose and touch 
could lead to many more sophisticated interactions, such as 
gesture-based 3D manipulation and navigation (Figure 1d), 
advanced 3D sculpting and drawing, music composition and 
performance, among others. 
In general, Touché could prove particularly useful for mo-
bile touchscreen interaction, where input is constrained due 
to small device size. In this context, a few extra bits of input 
bandwidth would be a welcomed improvement. Detailed 
controlled experiments evaluating gesture sensing on a sim-
ulated mobile device are reported subsequently. 
 

On-Body Gesture Sensing 
Unlike inanimate physical objects, the human body is highly 
variable and uncontrolled, making it a particularly challeng-
ing “input device”. Compounding this problem is that users 
are highly sensitive to instrumentation and augmentation of 
their bodies. For a sensing technique to be successful, it has 
to be minimally invasive. Research has attempted to over-
come these challenges by exploring remote sensing ap-
proaches, including bio-acoustics [17], EMG [33] and com-
puter vision [15], each of which has its own distinct set of 
advantages and drawbacks. Touché is able to sidestep much 
of this complexity by taking advantage of the conductive 
properties of the body and appropriate the skin as a touch 
sensitive surface while being minimally invasive.  
Because humans are inherently mobile, it is advantageous to 
define an on-body signal source and charge sink for Touché. 
As our hands serve as our primarily means of manipulating 
the world, they are the most logical location to augment 
with Touché. In this case, the source or sink is placed near 
the hands, for example, worn like a wristwatch. The other 
electrode can be placed in many possible locations, includ-
ing the opposite wrist (Figure 5b and 9), the waist, collar 
area, or lower back [11]. As a user touches different parts of 
their body the impedance between the electrodes varies as 
the signal flows through slightly different paths on and in 
the user’s body. The resulting capacitive profile is different 
for each gesture, which allows us to detect a range of hand-
to-hand gestures and touch locations (Figure 9). 
It is worth noting the remarkable kinesthetic awareness of a 
human being [3], which has important implications in the 
design of on-body interfaces [17]. As the colloquialism 
“like the back of your hand” suggests, we are intimately 
familiar with our bodies. This can be readily demonstrated 
by closing one’s eyes and touching our noses or clapping 
our hands together. In addition to our powerful kinesthetic 
senses, we have finely-tuned on-body touch sensations and 
hand-eye coordination, all of which can be leveraged for 
digital tasks.  
A wide array of applications can be built on top of the body. 
One example is controlling a mobile phone using a set of 

Figure 8: Capacitive profiles for enhancing touchscreen interaction with a hand posture sensing. 

Figure 9: Capacitive profiles for on-body Sensing with wrists-mounted Touché sensors. 



on-body gestures (Figure 1a). For example, making a “shh” 
gesture with index finger touching to the lips, could put the 
phone into silent mode. Putting the hands together, forming 
a book-like gesture, could replay voicemails. We evaluate 
feasibility of using a simple gesture set in the next section. 
Sensing Gestures in Liquids 
The real world does not consist only of hard and flat surfac-
es that can be easily enhanced with touch sensitivity. Liq-
uid, viscous, soft and stretchable materials are important 
elements of everyday life. Enhancing these materials with 
touch sensitivity, however, is challenging. Although there is 
a growing body of research sensing touch for textile, paper 
and silicon materials [8, 32, 44], enhancing a body of liquid 
with rich touch sensing has mostly remained out of reach, 
and is a good example of Touché’s application range.  
By interacting with water, we do not mean using touch 
screens under water, but touching the water itself. In partic-
ular, our approach can distinguish between a user touching 
the water’s surface and dipping their finger into it (Figure 
10), which is difficult to accomplish with current capacitive 
touch sensing techniques [7]. Resistive e.g., [31] touchpads 
would work under water, but require users to physically 
press on the surface, which is not truly interaction with the 
liquid, but rather with a submerged touchpad. Mechanical 
[41] or optical [26] techniques introduce large external sens-
ing apparatus, prohibiting ad-hoc and mobile interactions. 
Furthermore, optical sensing generally requires controlled 
lighting and clear liquids. Water-activated electrical switch-
es [45] can be used to detect the presence of water, but not 
the user playing with water. These are just a few of the chal-
lenges of user-liquid interaction. 
Touché can easily add touch sensitivity to various amounts 
of liquid held in any container (Figures 5c). Simply by plac-
ing the electrode on the bottom of the water vessel, we can 
detect a user touching the surface, dipping their fingers in 
the water, and so on (Figures 10). The container can be 
made of any material, and the electrode can be affixed to the 
outside – although putting it inside increases sensitivity. 
Applications of water sensing are mostly experiential, such 
as games, art and theme park installations and interactive 
aquariums. We can also track indirect interactions, i.e., 
when users are touching water via a conductive object. In 
this way children’s water toys and eating utensils could be 
easily enhanced with sounds and lights (Figure 1c). 
TOUCHÉ EVALUATION 
In the previous section we described five example applica-
tion domains where Touché could enhance touch interac-

tion. For our evaluation, we selected an exemplary configu-
ration and gesture set from each of these five domains de-
signed specifically to tax our system’s accuracy. Not only 
does this minimize the potential for accuracy ceiling effects, 
but also enables us to estimate the “sweet spot” in gesture 
set size and composition through several post-hoc analyses 
that are discussed subsequently. 
These studies serve several purposes: 1) to demonstrate the 
wide variety of applications and interactions enabled by 
Touché, 2) to underscore the immediate feasibility of Tou-
ché, 3) to explore the potential richness of gesture vocabu-
laries our system could support, and 4) to establish the base-
line performance of the recognition engine. 
Participants 
We used two groups of 12 participants. The first group 
completed the first four studies (9 males, 3 females, mean 
age 27.6). A second group of 12 completed the final liquid 
study created at a later date (10 males, 2 females, mean age 
28.6). Each study was run independently allowing us to 
distribute data collection over approximately a seven-day 
period. This permitted us to capture natural, real-world vari-
ations in e.g., humidity, temperature, user hydration and 
varying skin resistance. Although we do not specifically 
control for these factors, we show that our system is robust 
despite their potential presence. In fact, our “walk-up” gen-
eral classifiers were specifically designed to model these 
temporal and inter-participant variances. 
Procedure 
The five studies followed the same basic structure described 
below. Each study was run independently; the entire exper-
iment took approximately 60 minutes to complete. 
Training 
Participants were shown pictographically a small set of ges-
tures and asked to perform each sequentially. While per-
forming gestures, the participants were told to adjust their 
gestures slightly, e.g., tighten their grip. This helped to cap-
ture additional variety that would be acquired naturally with 
extended use, but impossible in a 60-minute experiment.  
While the participants performed each gesture, the experi-
menter recorded 10 gesture instances by hitting the spacebar 
and then advanced the participant to the next gesture until 
all gestures were performed. This procedure was repeated 
three times providing 30 instances per gesture per user. In 
addition to providing three periods of training data useful in 
post-hoc analysis, this procedure allowed us to capture vari-
ability in participant gesture performance, obtaining more 
gesture variety and improving classification. 

Figure 10: Capacitive profiles for interacting with water. 
 



Testing 
Following the training phase, collected data were used to 
initialize the system for a real-time classification evaluation. 
Participants were requested to perform one of the gestures 
from the training set randomly selected and presented on a 
display monitor. The system – invisible to both the experi-
menter and participants – made a classification when partic-
ipants performed each gesture. A true positive result was 
obtained when the requested gesture matched the classifier’s 
guess. The experimenter used the spacebar to advance to the 
next trial, with five trials for each gesture. 
Accuracy Measures 
Our procedure follows a per-user classifier paradigm where 
each participant had a custom classifier trained using only 
his or her training data. This produces robust classification 
since it captures the peculiarities of the user. Per-user classi-
fiers are often ideal for personal objects used by a single 
user, as would be the case with, e.g., a mobile phone, desk-
top computer, or car steering wheel. 
To assess performance dimensions that were not available 
in a real-time accuracy assessment, we ran two additional 
experiments post-hoc. Our first post-hoc analysis simulated 
the live classification experiment with one fewer gestures 
per set. The removed gesture was the one found to have the 
lowest accuracy in the full gesture set. For example, in the 
case of the grasp-sensing doorknob study, the circle gesture 
was removed, leaving no touch, one finger, pinch and grasp 
(Figure 6) Accuracy typically improves as the gesture set 
contracts. In general, we sought to identify gesture sets that 
exceeded the 95% accuracy threshold. 
Our second post-hoc analysis estimated performance with 
“walk up” users – that is, classification without any training 
data from that user, a general classifier. To assess this, we 
trained our classifier using data from eleven participants, 
and tested using data from a twelfth participant (all combi-
nations, i.e., 12-fold cross validation). This was the most 
challenging evaluation because of the natural variability of 
how people perform gestures, anatomical differences, as 
well as variability in clothes and shoes worn by the partici-
pants. However, this accuracy measure provides the best 
insight into potential real-world performance when per-user 
training is not feasible, e.g., a museum exhibit or theme 
park attraction. Moreover, it serves as an ideal contrast to 
our per-user classifier experimental results. 

EVALUATION RESULTS  
Figures 6 though 10 illustrate the physical setup and accom-
panying touch gesture sets for each of the five application 
domains we tested. Real-time accuracy results for all five 
studies are summarized in Figure 11. “Walk -up” accuracies 
with different-sized gesture sets are shown in Figure 12. 
Study 1: Making Objects Touch and Grasp Sensitive 
A doorknob was an obvious and interesting choice for our 
touch and grasp sensing study setup (Figure 6). We used a 
brass fixture that came with a high-gloss coating, providing 
a beneficial layer of insulation. A single wire was soldered 
to the interior metallic part of the knob, and connected to 
our sensor. As doors are fixed infrastructure, we grounded 
our sensor in this configuration. This is a minimally inva-
sive configuration that allows for existing doors to be easily 
retrofitted with additional touch sensitivity. 
A set of five gestures was evaluated as seen in Figure 6: no 
touch, one finger, pinch, circle, and grasp. This setup per-
formed well in the real-time per–user classifier experiment, 
at 96.7% accuracy (SD=5.6%). Dropping the circle gesture 
increased accuracy to 98.6% (SD=2.5%). 
Walk-up accuracy was significantly worse for five gestures 
– 76.8% (SD=9.2%), where the circle gesture was responsi-
ble for 95.0% of the errors. Once the circle gesture was re-
moved, walk-up accuracy improves to 95.8% (SD=7.4%).  
Study 2: Body Configuration Sensing 
To evaluate performance of Touché in body posture recog-
nition scenarios, we constructed a sensing table. This con-
sisted of a conventional table with a thin copper plate on top 
of it, covered with a 1.6 mm glass fiber and resin composite 
board (CEM-1) (Figure 7). A single wire connected copper 
plate to the Touché sensor board. The static nature of a table 
meant that we could ground the sensor to the environment 
in this configuration.  
A set of seven gestures was evaluated: not present, present, 
one hand, two hands, one elbow, two elbows, arms (Figure 
7). Average real-time classification performance with seven 
gestures was 92.6% (SD=9.4%). Eliminating the two elbows 
gesture boosted accuracy to 96.0% (SD=6.1%).  
Walk-up accuracy at seven gestures stands at 81.2%. As 
seen in Figure 12, accuracy surpasses 90% with five ges-
tures (not present, present, one hand, two hands, two elbow; 
91.6%, SD=7.8%). With only three gestures (presence, two 
hands, two elbow), accuracy is 100% for every participant. 

 
Figure 11. Real-time, per-user classification accuracy  

for five example applications. 

 
Figure 12. “Walk Up” classification accuracy for  

five example applications. 

 



Study 3: Enhancing Touchscreen Interaction 
The application possibilities of Touché to touchscreen inter-
action are significant and diverse. For both experimental 
and prototyping purposes we chose mobile device form fac-
tor (Figure 8). Mobility implies the inability to ground the 
sensor, making this setup particularly difficult. 
As a proof of concept, we created a pinch-centric gesture set 
which could be used for, e.g., a “right click”, zoom in/out, 
copy/paste, or similar function [23]. Our mobile device 
mockup has two electrodes: the front touch surface, simulat-
ing a touch panel, and the backside of the device. A Touché 
sensor is configured to measure the impedance between 
these two surfaces through the participant’s hand connecting 
them (Figure 5d). 
Figure 9 depicts a set of five gestures that were evaluated: 
no touch, thumb, one finger pinch, two finger pinch and all 
finger pinch. Per-user classifier accuracy with all gestures is 
93.3% (SD=6.2%). Removing the two finger pinch brings 
accuracy up to 97.7% (SD=2.6%). Walk-up accuracy at five 
gestures is 76.1% (SD=13.8%), too low for practical use. 
However, by reducing the gesture set to no touch, thumb 
and one finger pinch, accuracy is 100% for all participants, 
showing the immediate feasibility for mobile applications. 
Study 4: On-Body Gesture Sensing 
Unlike the previous three studies, human-gesture sensing 
has a predefined device – the human body. This leaves us 
with two design variables: sensor placement and gestures. 
For this study, we chose to place an electrode on each wrist, 
worn like a watch. The Touché sensor measured impedance 
between wrist electrodes through the body of participants. 
Due to the highly variable and uncontrolled nature of the 
human body, this experimental condition was the most chal-
lenging of our five studies.  
Our gesture set consisted of five gestures: no touch, one 
finger, five fingers, grasp, and cover ears (Figure 9). Real-
time, per-user classification accuracy was 84.0% (SD = 
11.4%) with five gestures. Removing a single gesture – one 
finger – improved accuracy to a useable 94.0% (SD=7.4%). 
In contrast, walk- up accuracy with a general classifier does 
significantly worse, with all five gestures yielding 52.9% 
accuracy (SD=13.8%). Reducing the gesture set to three (no 
touch, five fingers, grasp) only draws accuracy up to 87.1% 
(SD=12.5%) – stronger, but still too low for robust use. 
This divergence in accuracy performance between per-user 
and general classifiers is important. The results suggest that 
for on-body gestures where the user is both the “device” and 
input, per-user training is most appropriate. This should not 
be particularly surprising – unlike doorknobs, the individual 
differences between participants are very significant, not 
only in gesture performance, but also in their bodies’ com-
position. A per-user classifier captures and accounts for 
these per-user differences, making it robust. 
Study 5: Touching Liquids 
We attached a single electrode under a 250 mm-wide and 
500 mm-long fish tank, and filled it to a depth of 35 mm of 
water. The electrode was separated from the liquid by a 

pane of 3 mm-thick glass and attached to the Touché sensor 
board via a single wire (Figures 5c).  
Our test liquid gesture set consisted of no touch, one finger 
tip, three finger tips, one finger bottom, and hand sub-
merged (Figure 10). This experimental condition performed 
the best of the five. Real-time, per-user classification accu-
racy with the full gesture set was 99.8% (SD=0.8%). 
“Walk-up” classification performance was equally strong 
with all five gestures: 99.3% (SD=1.4%). Removing three 
finger tips improves accuracy up to 99.9% (Figure 12). 
Anatomical Factors 
Touché is sensitive to variations in users’ anatomy. To test 
if anatomical variations have a systematic effect on classifi-
cation accuracy, we ran several post hoc tests. We found no 
correlation between accuracy and height (1.6 ~ 1.9m), 
weight (52 ~ 111kg), BMI (19.6 ~ 32.3), or gender. This 
suggests the sensing is robust across a range of users.  
DISCUSSIONS AND CONCLUSION 
Touché has demonstrated that multi-frequency capacitive 
sensing is valuable and opens new and exciting opportuni-
ties in HCI. Would it be possible to achieve the same results 
with fewer sampling points? What are the optimal sweeping 
ranges and resolutions needed to achieve maximum perfor-
mance and utility of such a sensing technique?  
Optimizing and fine-tuning SFCS for specific configura-
tions and uses is a subject of future work and, therefore, 
beyond the scope of the current paper. In general, however, 
designing any SFCS solutions can be considered as a sam-
pling problem, i.e., how many samples and what frequency 
bands would allow us to accurately identify the state of the 
system? In the current implementation of Touché we used 
200 samples between 1 KHz and 3.5 MHz. Empirically, we 
found it to be a good trade-off between speed and accuracy 
of the recognition. More importantly, it allowed us to cap-
ture details of shapes of capacitive profiles, which was im-
portant in some of the Touché applications, e.g., in hand-to-
hand gestures. Therefore, decreasing the sweep resolution 
would improve performance, but also reduces the robust-
ness of gesture recognition in some of applications. 
We found that it was difficult, if not impossible, to deter-
mine a-priori which frequency bands are most characteristic 
for specific interactions, applications, users, materials and 
contexts. Indeed, around 1 MHz looks useful on Figure 9, 
but not at all on Figure 10. Therefore, we designed the most 
general sensing solution by sampling over a broad range of 
frequencies. Consequently, Touché – without any modifica-
tion – enables a rich swath of interactions from humans, to 
doorknobs, to water. This would be impossible if we limited 
the range of frequencies. However, in practical applications 
the sensing can be limited to a range of frequencies that are 
most appropriate for a particular product, reducing cost and 
improving robustness. 
Our work on Touché was broadly motivated by the vision of 
disappearing computers postulated by Mark Weiser [43]. He 
argued that computer must disappear in everyday objects 



and “… the most profound technologies are those that dis-
appear”. As powerful and inspiring as this vision is, it im-
poses a significant problem: how we will interact with com-
puters that are invisible? From the end-user perspective, the 
interface will appear as a computer as long as there are but-
tons to press and mice to move, and thus will never truly 
disappear. Completely new interaction technologies are re-
quired, and we hope that this work contributes to the emer-
gence of future ubiquitous computing environments. 
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